I have always thought that morality in politics was something essential, just like feelings and affinities.

Laurent-Moïse Schwartz (5 March 19154 July 2002) was a French mathematician. He pioneered the theory of distributions, which gives a well-defined meaning to objects such as the Dirac delta function. He was awarded the Fields Medal in 1950 for his work on the theory of distributions. For several years he taught at the École polytechnique.

Quotes

  • To discover something in mathematics is to overcome an inhibition and a tradition. You cannot move forward if you are not subversive.
    • Un mathematicien aux prises avec le siecle (1997)
  • Trotskyism gave me … a remarkable education, clearly more advanced and sophisticated than that of most youngsters of my age. But by the extremism and sectarianism of its ideas, and by its stereotyped language, it neutralised me during the occupation. My judgment remains extremely severe on my own actions as well as those of the majority of the Trotskyist party during that period.
    • A Mathematician Grappling With His Century (2001)
  • I was always deeply uncertain about my own intellectual capacity; I thought I was unintelligent. And it is true that I was, and still am, rather slow. I need time to seize things because I always need to understand them fully. Even when I was the first to answer the teacher's questions, I knew it was because they happened to be questions to which I already knew the answer. But if a new question arose,usually students who weren't as good as I was answered before me. Towards the end of the eleventh grade, I secretly thought of myself as stupid. I worried about this for a long time. Not only did I believe I was stupid, but I couldn't understand the contradiction between this stupidity and my good grades. I never talked about this to anyone, but I always felt convinced that my imposture would someday be revealed: the whole world and myself would finally see that what looked like intelligence was really just an illusion. If this ever happened, apparently no one noticed it, and I’m still just as slow. (...)At the end of the eleventh grade, I took the measure of the situation, and came to the conclusion that rapidity doesn't have a precise relation to intelligence. What is important is to deeply understand things and their relations to each other. This is where intelligence lies. The fact of being quick or slow isn't really relevant. Naturally, it's helpful to be quick, like it is to have a good memory. But it's neither necessary nor sufficient for intellectual success.
    • A Mathematician Grappling With His Century (2001). Quoted in slide no.22

Quotes about Schwartz

Mathematics, politics and butterflies were the three great loves of Laurent Schwartz. ~ Angelo Guerreggio
  • Mathematics, politics and butterflies were the three great loves of Laurent Schwartz.
    • Angelo Guerraggio, in "Laurent Schwartz: political commitment and mathematical rigor", in Mathematical Lives (2011), p. 157-164
  • Schwartz never offered blind allegiance to Left or Right. Above all he was, in his own words, a man who hated to see systems not working properly.

Mathematics
Mathematicians
(by country)

Abel Anaxagoras Archimedes Aristarchus of Samos Averroes Arnold Banach Cantor Cartan Cohen Descartes Diophantus Erdős Euclid Euler Fourier Gauss Gödel Grassmann Grothendieck Hamilton Hilbert Hypatia Lagrange Laplace Leibniz Milnor Newton von Neumann Noether Penrose Perelman Poincaré Pólya Pythagoras Riemann Russell Schwartz Serre Tao Tarski Thales Turing Wiles Witten

Numbers

1 23 360 e π Fibonacci numbers Irrational number Negative number Number Prime number Quaternion

Concepts

Abstraction Algorithms Axiomatic system Completeness Deductive reasoning Differential equation Dimension Ellipse Elliptic curve Exponential growth Infinity Integration Geodesic Induction Proof Partial differential equation Principle of least action Prisoner's dilemma Probability Randomness Theorem Topological space Wave equation

Results

Euler's identity Fermat's Last Theorem

Pure math

Abstract algebra Algebra Analysis Algebraic geometry (Sheaf theory) Algebraic topology Arithmetic Calculus Category theory Combinatorics Commutative algebra Complex analysis Differential calculus Differential geometry Differential topology Ergodic theory Foundations of mathematics Functional analysis Game theory Geometry Global analysis Graph theory Group theory Harmonic analysis Homological algebra Invariant theory Logic Non-Euclidean geometry Nonstandard analysis Number theory Numerical analysis Operations research Representation theory Ring theory Set theory Sheaf theory Statistics Symplectic geometry Topology

Applied math

Computational fluid dynamics Econometrics Fluid mechanics Mathematical physics Science

History of math

Ancient Greek mathematics Euclid's Elements History of algebra History of calculus History of logarithms Indian mathematics Principia Mathematica

Other

Mathematics and mysticism Mathematics education Mathematics, from the points of view of the Mathematician and of the Physicist Philosophy of mathematics Unification in science and mathematics


This article is issued from Wikiquote. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.