In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2.

Quotes

  • Admittedly, Fermat's Last Theorem was always called a theorem and never a conjecture. But that is unusual, and probably came about because Fermat claimed in notes that he scribbled in his copy of Diophantus's Arithmetica that he had a marvellous proof that was unfortunately too large to write in the margin of the page. Fermat never recorded his supposed proof anywhere, and his marginal comments became the biggest mathematical tease in the history of the subject. Until Andrew Wiles provided an argument, a proof of why Fermat's equations really had no interesting solutions, it actually remained a hypothesis - merely wishful thinking.
  • The Wiles proof is a master symphony of the major mathematical themes that have evolved in this century: Hecke's theory of modular forms, Artin L-functions, Grothendieck's theory of schemes, the theory of ℓ-adic representations and the Tate module, the Langlands program, Serre's p-adic modular forms, the Eichler-Shimura theory, Iwasawa theory and its generalizations by Coates to elliptic curves, Kolyvagin's Euler systems. The list is by no means exhaustive, to say the least. As Barry Mazur has so aptly put it, "Not to mention the proof, the names alone of the major contributors will not fit into any margin." It is indeed very satisfying to see the evolution of such mathematical ideas.
  • FLT deserves a special place in the history of civilization. Because of its simplicity, it has tantalized amateurs and professionals alike, and its remarkable fecundity has led to the development of large areas of mathematics such as, in the last century, algebraic number theory, ring theory, algebraic geometry, and in this century, the theory of elliptic curves, representation theory, Iwasawa theory, formal groups, finite flat group schemes and deformation theory of Galois representations, to mention a few. It is as if some supermind planned it all and over the centuries had been developing diverse streams of thought only to have them fuse in a spectacular synthesis to resolve FLT. No single brain can claim expertise in all of the ideas that have gone into this "marvelous proof". In this age of specialization, where "each one of us knows more and more about less and less", it is vital for us to have an overview of the masterpiece such as the one provided by this book.

See also


Mathematics
Mathematicians
(by country)

Abel Anaxagoras Archimedes Aristarchus of Samos Averroes Arnold Banach Cantor Cartan Cohen Descartes Diophantus Erdős Euclid Euler Fourier Gauss Gödel Grassmann Grothendieck Hamilton Hilbert Hypatia Lagrange Laplace Leibniz Milnor Newton von Neumann Noether Penrose Perelman Poincaré Pólya Pythagoras Riemann Russell Schwartz Serre Tao Tarski Thales Turing Wiles Witten

Numbers

1 23 360 e π Fibonacci numbers Irrational number Negative number Number Prime number Quaternion

Concepts

Abstraction Algorithms Axiomatic system Completeness Deductive reasoning Differential equation Dimension Ellipse Elliptic curve Exponential growth Infinity Integration Geodesic Induction Proof Partial differential equation Principle of least action Prisoner's dilemma Probability Randomness Theorem Topological space Wave equation

Results

Euler's identity Fermat's Last Theorem

Pure math

Abstract algebra Algebra Analysis Algebraic geometry (Sheaf theory) Algebraic topology Arithmetic Calculus Category theory Combinatorics Commutative algebra Complex analysis Differential calculus Differential geometry Differential topology Ergodic theory Foundations of mathematics Functional analysis Game theory Geometry Global analysis Graph theory Group theory Harmonic analysis Homological algebra Invariant theory Logic Non-Euclidean geometry Nonstandard analysis Number theory Numerical analysis Operations research Representation theory Ring theory Set theory Sheaf theory Statistics Symplectic geometry Topology

Applied math

Computational fluid dynamics Econometrics Fluid mechanics Mathematical physics Science

History of math

Ancient Greek mathematics Euclid's Elements History of algebra History of calculus History of logarithms Indian mathematics Principia Mathematica

Other

Mathematics and mysticism Mathematics education Mathematics, from the points of view of the Mathematician and of the Physicist Philosophy of mathematics Unification in science and mathematics


This article is issued from Wikiquote. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.